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Behavior of a Polyion at the Charged Wall of the Same
Sign in Presence of Counterions and of a System of

two Equal Uncharged Polymer chains. Study by Monte
Carlo Method

A. Yu. Antipina,* M. A. Antyukhova, A. A. Yurchenko,
P. N. Vorontsov-Velyaminov

Summary: In this paper Monte Carlo simulations of two polymer systems are
presented. The first system is a single polyion near the plane charged wall of the
same sign with presence of counterions. The interest in studying this system is
stimulated by experiments on binding of negatively charged DNA deposited on the
negatively charged substrate.!! The second system contains two non-charged poly-
mer chains with attractive or repulsive intrachain interaction and attraction between
chains in both cases. Treatment of this system is aimed at further simulation of a
system of polyions as the next step. In both cases the continuous and discrete models
of chains were considered and Monte Carlo simulation method within Wang-Landau
algorithm was used. It allowed to obtain the energy-distribution functions that in its
turn made it possible to calculate various thermal properties of the systems in a wide
temperature range: thermodynamic quantities and structural characteristics (root
mean-square radius of gyration, root mean-square distance between the centers of
mass of two polymers).
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Introduction

Monte Carlo (MC) method proposed by
Metropolis et. al. sixty years ago[z] proved
to be a powerful tool in studying a large
variety of highly nonideal molecular sys-
tems.>* On the other hand, the conven-
tional MC procedure becomes ineffective
in a number of important physical situa-
tions. In order to study systems with rough
landscape of potential energy with great
number of local minima, or considering
phase transitions and other phenomena
taking place at low temperatures, high
densities or in presence of complex mole-
cular components it is necessary to modify
the standard approach. Such modifications
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are known now as generalized ensembles
MC.5! They include the expanded ensem-
ble MC#! and entropic sampling (ES)1
which proved to be effective in solving the
above mentioned problems. Their common
drawback was that they required a pre-
liminary procedure to obtain a set of
initially unknown parameters (‘‘balancing
factors”)l”! which play a key role in the
simulation. In 2001 Wang and Landau
(WL) proposed an algorithm, in which
automatic adjustment of these parameters
in entropic sampling is performed.!'"!

In our molecular simulation group (at
Dep.Mol.Biophys.) the WL algorithm is
actively used for sampling of polymer
systems.">%] In particular we decided to
simulate the process of approachment of
the DNA to the substrate. The aspect of
interest is that the negatively charged DNA
is deposited on the negatively charged
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substrate.l'! The first part of our paper is
aimed at simulation of this phenomenon. In
the preceding paper ““Study of the polymer
interaction with a surface by entropic
sampling”’['®! the behavior of an uncharged
polymer chain near an uncharged wall was
studied.

In the second part a system of two
uncharged polymer chains with attractive
or repulsive intrachain interaction and
variable attraction between chains is con-
sidered. In an actual single component
polymer system all interactions should be
chosen equal. This case is also presented in
the paper. Extension of interaction types is
made in methodological purpose as a first
step for further simulation of polyionic
systems which is being performed now.

In this paper the ES-WL method is
applied to study both systems within lattice
and continuum models. We consider the
thermal case, in which interaction between
monomers is introduced. For both models
the energy distribution functions are calcu-
lated that provides further calculation of
the internal energy, the mean-square radius
of gyration and mean-square distance
between the centers of mass of two
polymers in a wide temperature range.

The article is organized as follows. First,
the methods and algorithms used for
obtaining distribution functions and calcula-
tion of averages are described. Then follow
the descriptions of each of two models with
further sections containing the obtained
results and their discussion. Finally conclu-
sions of the work are presented.

The Entropic Modeling Method and
the Wang-Landau Algorithm

The purpose of the method is to obtain
density of energy states (). Entropic
modeling method”!%! has the following
basis. Performing a random walk in the
energy space with transition probabilities
proportional to the inverse density of states
1/Q(E), we compensate the natural distri-
bution of the energy and this way get
uniform visiting rates of all energy states.
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Let us write the configuration integral in the
canonical ensemble in the form

Z(p) = / e POsYy = / Q(E)e POVSE

= / >(E)—pE dE,

where B is the inverse temperature,
Q(E) = [5(U(q) - E)dg and  S(E) =
InQ(E) is the entropy for a given value of
E. Wang-Landau algorithm"!! solves the
problem of determining (). The range of
energy of the system FEnin < E < Enax 1
divided into a finite number of N, equal
segments (‘“‘boxes’’). We introduce an array
of ) consisting of N, elements, which
correspond to these segments. In calcula-
tions it is convenient to use the entropy
S(E) = InQ(E). Initially, all Q are taken to
be equal. At each MC step the conforma-
tion of the system is being changed. Let £
and E; be the initial and the trial energies of
the MC-step. Each conformation corre-
sponds to its “‘box” i-th and j-th. The trial
state j is accepted with probability

p(E1 — Eo) = min(l,&) = min(LeSiij).

Y

In the case of failure, the system remains
in its initial state, and the procedure is
repeated for the new MC-step. Each time
when visiting the k-th “box” (in the case of
transition the state k is equal to the trial state
J, in the case of failure k =1i) k-th element of
the array () is multiplied by the increment
¢>1 (the term AS = Inc is added to Sy):
Qr — Qpe, Sk — S +AS. In each m-th
series of MC-steps ¢ remains constant. In
the next series ¢ decreases so that for example
Cmi1 = /Cm (ASpi1 = 0.5A8,,).'] We also
introduce an array of visits n, initially its
elements are zero. At each MC step unity is
added to the cell n, while S — Si + AS.
Wang-Landau algorithm provides automatic
adjustment and further fine tuning of uniform
visiting rates distribution of the n; boxes,
which indicates the correct determination of
densities (). At the end of calculation density
) is normalized on unity.

This way, during the computer experi-
ment the shares of Q(E;) are determined,
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corresponding to i-th segments of the
energy. The canonical average of any
quantity f is calculated using the following

Ny Ny
formula (1)(s) = £ fi0iexp(=pE) / 3. Qjenp(-HEy),
i= i=

where f; is the value of ffor the i-th segment
of energy.

Behavior of a Polyion at the
Charged Wall of the Same Sign:
Model

The polyion is a sequence of N+ 1 nodes-
monomers each possessing a unit negative
charge and connected by the N immaterial
segments of unit length. We studied the
interaction of a single polyion with infinite
charged homogeneous “wall”, which occu-
pies half-space with infinite flat surface. The
charge of the “wall” is uniformly distributed
over its surface with the density o = —0.01.
Also the counterions are presented in the
system, their charges can range from 1 to 4
(in different experiments) and their number
is chosen so as to provide electrical neutrality
of the entire system. Coulomb interaction
between all elements is introduced.

The system is placed in a cell with the size
of 2Nx2NxN (N is the length of the
polyion) with periodic boundary conditions
imposed in X and Y directions along the
“wall” and with a restriction in the Z-
direction perpendicular to the “wall”. In
presence of the “wall” the system is limited in
Z direction with Z= N. In the discrete model
the lattice for the ions is shifted with respect
to the lattice of monomers by half the length
of the lattice unit in all three directions.

The bounding plane

o @
140
@

=
e

Charged surface (“wall”)

Position of two monomers or two ions at
the same point is considered to be a
selfintersection in the system. In the case
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of the continuum model the monomers and
the ions are spheres with unit diameter
(segment length). Location of centers of
two monomers and (or) of ions at a distance
smaller than the diameter of the system is a
self-intersecting.

It is generally accepted that the Ewald
summation is the most consistent way to
treat long-range electrostatic interactions.
In Uit was shown that the minimum image
approach gives results practically coincid-
ing with the Ewald summation for short
(N=10, 30) flexible polyelectrolyte. At the
same time the minimum image convention
works much faster. So for self-nonintersect-
ing conformations the energy is calculated
as the sum of pair electrostatic interaction
between all the elements by using method
of minimum image convention.

The natural units for our model are the
lattice constant [ (segments length) and
monomers charge ¢. So the energy is
measured in g2 /I units and the temperature
in ¢%/(l - kg).

At each MC-step the polyion chain
conformation or one of the position of
counterions is modified with equal prob-
ability 0.5. There are three ways of chain
modification:

1) Shift: the chain is moved as a whole a
few steps along the Z axis and the rest of
the system remains unchanged.

2) Reptation: the first few units (not more
than N/5, i.e. the chain “head”) are cut
off, and the “‘tail” is built up so that the
chain retains its length.

3) Cutting off the ““tail”’: the last few units
of the “tail” are cut off and the new
random ones are built up.

A counterion is displaced by a small

distance.

Behavior of a Polyion at the
Charged Wall of the Same Sign:
Results

The results are presented as the plots for the
discrete (Figure 1-3) and continuum
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Figure 1.

Lattice model: the dependence of the root mean square end-to-end distance on the temperature for different

lengths of polymers N and charges of ions g;.

(Figure 4-6) models. One can make the
following conclusions. Effect of deposition
of the polyion on the substrate with the same
charge was clearly observed. It is explained
by dominance of positive charge counter-
ions, which surround either polyion or
“wall”” producing the so called overcharging
effect. Thus by lowering the temperature,
the polyion approaches (deposits) to the
surface of the wall (Figure 2, 5). The mean
distance from the center of mass of polyion
to the “wall” tends to zero with decreasing
temperature. The effect increases with the
ion charge increase.

On the whole polyion behaves as a
flexible free polyion in the solution
(Figure 1, 4).'*1 At high temperatures,

25

the mean distance between the ends of the
polyion tends to the distance between the
ends of the uncharged polymer without
self-intersection Aipps = N3/°. At tempera-
tures T=1 =+ 5 swelling of the coil polyion is
observed due to the repulsion of monomers
from each other. But at low temperatures
due to condensation of counterions com-
paction of polyion occurs, the so-called
transition to a globule.

Behavior of Two Equal Polymer
Chains: Model

The polymer is presented as a sequence of
N+ 1 nodes-monomers connected by the N

0,01 0,1

Figure 2.

Lattice model: the dependence of the mean distance from the center of mass of polyion to the “wall” on the

temperature. (See legend of Figure 1).
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0,01 0,1

Figure 3.
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Lattice model: the dependence of the mean z-coordinates of the ions on the temperature. (See legend of

Figure 1).

immaterial segments of unit length. The
system is placed in a cubic cell with the edge
length L being equal to the double length of
the polymer chain. The periodic boundary
conditions are imposed in all three Corte-
sian directions. Thus we have specific
volume (determined as L?/(2N + 2)) from
83,33 to 2403,85.

In the lattice model the non-reversal
random walks (NRRW) are used for
generating of the chain. In this model the
k-th node-monomer can not overlap with
the (k —2)-th one, such chains are called
semi-phantom.['>13!

At each MC-step one of the two polymer
chains is modified. The chain is chosen
with probability 0.5. Coordinates of the
chosen chain X are modified in one of
the four following ways (with probability
0.25):

1) Xpev = X,‘j‘d, 0<k<N-N. and for
N—-N.+1<k<N XV are gener-
ated randomly by NRRW (the ‘“head”
of the chain is preserved, but the “‘tail”’ is
modified);

2) Xpev = XM N, <k<N
0<k<N.—-1 Xpv

and for
are generated

Tt

N=30
25
20
15

10

0,01 0,1

Figure 4.

=
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Continuum model: the dependence of the root mean square end-to-end distance on the temperature for
different lengths of polymers N and charges of ions g;.
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Figure 5.

Continuum model: the dependence of the mean distance from the center of mass of polyion to the “wall” on

the temperature. (See legend of Figure 4).

randomly by NRRW (the “tail” of the
chain is preserved, but the “head” is
modified);

3) Xpev = X, , 0 <k <N — N, and for
N—-N.+1<k<N X are gener-
ated randomly by NRRW (the “head”
of the chain is removed and the “tail” is
newly grown);

4) XpV = l(c)l—dNu N.<k<N and for
0 <k <N —1X}°¥ are generated ran-
domly by NRRW (the “tail” of the
chain is removed and the ‘“head” is
newly grown).

Here X}V is a three-dimensional vector
of coordinates of the k-th monomer for the
newly built chain conformation. N, is
randomly chosen from 1 to N/5 at each
MC-step. In the process of computer
modeling for each conformation of the
constructed system it is determined
whether the conformation is self-intersect-
ing one or not. In the discrete model the
location of two monomers at the same point
is considered to be a self-intersection of the
system. In the continuum model nodes are
spheres with a diameter d, and the approach
of any pair of monomers (except those
linked in the chain) at a distance less than
their diameter, is considered as a self-
intersection in the system.

For non-self-intersecting conformations
the energy is calculated as a sum of pair
potentials of interaction between mono-

Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

mers (excluding linked ones). In the case of
the lattice model each contact (the location
of the monomers at a unit distance)
corresponds to the energy ¢;, where i, j
are the indices of polymer chains (1 or 2). In
the continuum model the interaction
between monomers is described by
Lennard-Jones potential Ur)=
—4e;((d/r)"? = (d/r)°) (for e; < 0) and its
repulsive part U(r) = 45,~j(d/r)12 (for
g > 0), where r is the distance between
the centers of monomers, d is the diameter
of monomers.

We investigate only attractive interchain
interaction (ej; < 0). Parameters £1; and
ey are equal (e11 = ey = €). We investigate
situations when interchain interactions are
essentially less (e12 =0.2¢), coincide
(e12 = £¢) and greatly higher (g0 = 5¢)
than intrachain interaction.

So the energy is measured in e-units and
the temperature in |e|/kg.

The variation range for E was deter-
mined in preliminary runs (computer
experiments). This range of the energy
Enin < E< Enax was divided into Ny
«boxes».

As long as the share of non-self-inter-
secting chains is very small (especially for
long polymers), and the share of self-
intersecting chains is large, sorting by the
number of intersections was carried out:
four “boxes’” were introduced instead of a
single one. The first box corresponds to

www.ms-journal.de
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0,01 0,1

Figure 6.

Continuum model: the dependence of the mean z-coordinates of the ions on the temperature. (See legend of

Figure 4).

chains with 1-4 self-intersections, the
second, the third and the forth ones were
for 5-10, 11-18 and for chains with more
than 19 self-intersections correspondingly.
This allowed us to avoid ‘“‘freezing” the
system in a single ‘““box”’, corresponding to
the much larger volume of conformational
space compared to others.

As aresult of computer simulation using
the Wang-Landau algorithm the distribu-
tion function over “boxes” ({);) was
determined. With the aid of this function
the canonical values of the internal energy,
the mean-square radius of gyration and the
mean-square distance between the centers
of mass of two polymers were determined.

Behavior of Two Equal Polymer
Chains: Results

As aresult of computer simulation we have
determined the energy distributions for
polymers with length 5 <N <25 and differ-
ent energies of interaction of the mono-
mers.

Figure 7 shows a normalized visiting
histograms for boxes n; for the lattice
model, their flatness indicates the correct
tuning of densities (). The dependences are
presented in the plot with parameters
e1p = € < 0 (for other investigated systems
box visiting are similar). Good uniform

Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

visiting is observed at all energy ranges
except a small deviation at smallest energy
for N=125.

The resulting distributions ) for both
models are shown in Figure 8 and 9. Note
that the figures show the energy distribu-
tions only for non-self-intersecting chains.

Figure 10 and 11 present the results for
the root mean-square radius of gyration (R)
and the root mean-square distance between
the centers of mass of polymers (D) as a
function of temperature for the lattice
model. Same dependences for continuum
model are presented in Figure 12 and 13.
The dependences R(T) demonstrate con-
traction of the polymer size at low tem-
peratures. At the same time in Figure 11
and 13 one can observe sharp approach of
centers of mass of polymers with the
decrease of temperature that corresponds
to a coil-globule transition.

Two regimes of compactization are
observed. If the interaction within each
chain is either repulsive (¢ > 0) or weakly
attractive (Je| < |erz|), at low temperatures
due to mutual attraction of their monomers
(e12 < 0) there occurs common compacti-
zation of the system with tightly interwoven
chains. Another regime corresponds to
strong attraction inside each polymer
(le] >> |e1z]). In this case each chain
becomes compact separately and then
two separate globules attract each other

www.ms-journal.de
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Figure 7.
Normalized visit rates, compared with prescribed levels (horizontal lines) for different lengths of polymers N
(lattice model, energy parameters are €, = € < 0).
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Figure 8.
Lattice model: the energy-distribution function for different lengths of polymers N and energy parameters:
e <oande, =¢(a),&, = 0.2¢ (b), &, = 5¢(c); ¢ > 0and &, = —e (d) (The lines were drawn to guide the eye).
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Figure 8.
(Continued).

“sticking” finally together with their sur-
faces. ‘““Sticking” becomes significant at
lower temperatures.

Conclusion

Wang-Landau algorithm used in the pre-
sent work allows to calculate the energy
distribution function in a wide energy range
needed to calculate physical quantities in a
wide range of temperatures. The advantage
of this algorithm is that it finds and properly
accounts for the states of the system with
very small probabilities (within 20-25
orders).

The investigation of the behavior of a
polyion at the charged wall of the same sign
gave the result corresponding to the

Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

experimental data of other researchers
for DNA!! where the deposition of the
polyion on the substrate was observed. At
this point we can say that our simulation is
reliable and can be extended to the
modeling of more complicated systems
with more elements.

We investigated the interaction of two
semi-phantom polymer chains with differ-
ent energies of interaction. The length of
the chains were taken relatively small, since
in the case of longer chains longer computer
time is needed to obtain satisfactory results.
This system can be comparatively easy
modified into a more complicated one, for
instance by introducing charges located on
node-monomers and adding counter ions to
the system, i. e. considering a polyelec-
trolyte.

www.ms-journal.de
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Figure 9.
Continuum model: the energy-distribution function for different lengths of polymers N and energy parameter:
a)e<0,e,=¢b)e>0¢,=—c
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Figure 10.
Lattice model: The dependence of the mean radius of gyration of the polymer on temperature (||/kg units).
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Figure 11.

Lattice model: the dependence of the mean distance between the centers of mass of polymers on temperature
(le|/ke units) for different lengths N and energy parameters ey, €,,, 1, (see legend of Figure 11).

0,0 T T
0,01 0,1 1 10 100

Figure 12.
Continuum model: The dependence of the mean radius of gyration of the polymer on temperature (|e|/kg units)

for different lengths N in the cases of attraction (solid line) and repulsive (dashed lines) of the monomers in a
single chain. d=1.

N=25

20

0,01 0,1 1 10 100

Figure 13.
Continuum model: The dependence of the mean distance between the centers of mass of polymers on the

temperature (|e|/kg units) at different lengths N in the cases of attraction (solid line) and repulsive (dashed lines)
of the monomers in one chain. d=1.
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