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Behavior of a Polyion at the Charged Wall of the Same

Sign in Presence of Counterions and of a System of

two Equal Uncharged Polymer chains. Study by Monte

Carlo Method

A. Yu. Antipina,* M. A. Antyukhova, A. A. Yurchenko,

P. N. Vorontsov-Velyaminov

Summary: In this paper Monte Carlo simulations of two polymer systems are

presented. The first system is a single polyion near the plane charged wall of the

same sign with presence of counterions. The interest in studying this system is

stimulated by experiments on binding of negatively charged DNA deposited on the

negatively charged substrate.[1] The second system contains two non-charged poly-

mer chains with attractive or repulsive intrachain interaction and attraction between

chains in both cases. Treatment of this system is aimed at further simulation of a

system of polyions as the next step. In both cases the continuous and discrete models

of chains were considered and Monte Carlo simulation method within Wang–Landau

algorithm was used. It allowed to obtain the energy-distribution functions that in its

turn made it possible to calculate various thermal properties of the systems in a wide

temperature range: thermodynamic quantities and structural characteristics (root

mean-square radius of gyration, root mean-square distance between the centers of

mass of two polymers).
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Introduction

Monte Carlo (MC) method proposed by

Metropolis et. al. sixty years ago[2] proved

to be a powerful tool in studying a large

variety of highly nonideal molecular sys-

tems.[3,4] On the other hand, the conven-

tional MC procedure becomes ineffective

in a number of important physical situa-

tions. In order to study systems with rough

landscape of potential energy with great

number of local minima, or considering

phase transitions and other phenomena

taking place at low temperatures, high

densities or in presence of complex mole-

cular components it is necessary to modify

the standard approach. Such modifications
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are known now as generalized ensembles

MC.[5,6] They include the expanded ensem-

ble MC[7,8] and entropic sampling (ES)[9,10]

which proved to be effective in solving the

above mentioned problems. Their common

drawback was that they required a pre-

liminary procedure to obtain a set of

initially unknown parameters (‘‘balancing

factors’’)[7] which play a key role in the

simulation. In 2001 Wang and Landau

(WL) proposed an algorithm, in which

automatic adjustment of these parameters

in entropic sampling is performed.[11]

In our molecular simulation group (at

Dep.Mol.Biophys.) the WL algorithm is

actively used for sampling of polymer

systems.[12–15] In particular we decided to

simulate the process of approachment of

the DNA to the substrate. The aspect of

interest is that the negatively charged DNA

is deposited on the negatively charged
, Weinheim wileyonlinelibrary.com
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substrate.[1] The first part of our paper is

aimed at simulation of this phenomenon. In

the preceding paper ‘‘Study of the polymer

interaction with a surface by entropic

sampling’’[16] the behavior of an uncharged

polymer chain near an uncharged wall was

studied.

In the second part a system of two

uncharged polymer chains with attractive

or repulsive intrachain interaction and

variable attraction between chains is con-

sidered. In an actual single component

polymer system all interactions should be

chosen equal. This case is also presented in

the paper. Extension of interaction types is

made in methodological purpose as a first

step for further simulation of polyionic

systems which is being performed now.

In this paper the ES–WL method is

applied to study both systems within lattice

and continuum models. We consider the

thermal case, in which interaction between

monomers is introduced. For both models

the energy distribution functions are calcu-

lated that provides further calculation of

the internal energy, the mean-square radius

of gyration and mean-square distance

between the centers of mass of two

polymers in a wide temperature range.

The article is organized as follows. First,

the methods and algorithms used for

obtaining distribution functions and calcula-

tion of averages are described. Then follow

the descriptions of each of two models with

further sections containing the obtained

results and their discussion. Finally conclu-

sions of the work are presented.
The Entropic Modeling Method and
the Wang–Landau Algorithm

The purpose of the method is to obtain

density of energy states V. Entropic

modeling method[9,10] has the following

basis. Performing a random walk in the

energy space with transition probabilities

proportional to the inverse density of states

1/V(E), we compensate the natural distri-

bution of the energy and this way get

uniform visiting rates of all energy states.
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Let us write the configuration integral in the

canonical ensemble in the form

ZðbÞ ¼
Z

e�bUðqÞdq ¼
Z

VðEÞe�bUðqÞdE

¼
Z

eSðEÞ�bEdE;

where b is the inverse temperature,

VðEÞ ¼
R
dðUðqÞ � EÞdq and SðEÞ ¼

lnVðEÞ is the entropy for a given value of

E. Wang–Landau algorithm[11] solves the

problem of determining V. The range of

energy of the system Emin � E � Emax is

divided into a finite number of Nb equal

segments (‘‘boxes’’). We introduce an array

of V consisting of Nb elements, which

correspond to these segments. In calcula-

tions it is convenient to use the entropy

SðEÞ ¼ lnVðEÞ. Initially, allVk are taken to

be equal. At each MC step the conforma-

tion of the system is being changed. Let E1

andE2 be the initial and the trial energies of

the MC-step. Each conformation corre-

sponds to its ‘‘box’’ i-th and j-th. The trial

state j is accepted with probability

pðE1 ! E2Þ ¼ min 1;
Vi

Vj

� �
¼ minð1; eSi�SjÞ:

In the case of failure, the system remains

in its initial state, and the procedure is

repeated for the new MC-step. Each time

when visiting the k-th ‘‘box’’ (in the case of

transition the state k is equal to the trial state

j, in the case of failure k¼ i) k-th element of

the array V is multiplied by the increment

c > 1 (the term DS ¼ lnc is added to Sk):

Vk ! Vkc, Sk ! Sk þ DS. In each m-th

series of MC-steps c remains constant. In

the next series c decreases so that for example

cmþ1 ¼
ffiffiffiffiffiffi
cm

p
(DSmþ1 ¼ 0:5DSm).

[11] We also

introduce an array of visits n, initially its

elements are zero. At each MC step unity is

added to the cell nk while Sk ! Sk þ DS.

Wang–Landau algorithm provides automatic

adjustment and further fine tuning of uniform

visiting rates distribution of the nk boxes,

which indicates the correct determination of

densitiesV. At the end of calculation density

V is normalized on unity.

This way, during the computer experi-

ment the shares of VðEiÞ are determined,
, Weinheim www.ms-journal.de
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corresponding to i-th segments of the

energy. The canonical average of any

quantity f is calculated using the following

formula fh iðbÞ ¼
PNb

i¼1
fiViexpð�bEiÞ

,PNb

i¼1
Viexpð�bEiÞ,

where fi is the value of f for the i-th segment

of energy.
Behavior of a Polyion at the
Charged Wall of the Same Sign:
Model

The polyion is a sequence of Nþ 1 nodes-

monomers each possessing a unit negative

charge and connected by the N immaterial

segments of unit length. We studied the

interaction of a single polyion with infinite

charged homogeneous ‘‘wall’’, which occu-

pies half-space with infinite flat surface. The

charge of the ‘‘wall’’ is uniformly distributed

over its surface with the density s ¼ �0:01.

Also the counterions are presented in the

system, their charges can range from 1 to 4

(in different experiments) and their number

is chosen so as to provide electrical neutrality

of the entire system. Coulomb interaction

between all elements is introduced.

The system is placed in a cell with the size

of 2N� 2N�N (N is the length of the

polyion) with periodic boundary conditions

imposed in X and Y directions along the

‘‘wall’’ and with a restriction in the Z-

direction perpendicular to the ‘‘wall’’. In

presence of the ‘‘wall’’ the system is limited in

Z direction with Z¼N. In the discrete model

the lattice for the ions is shifted with respect

to the lattice of monomers by half the length

of the lattice unit in all three directions.

Position of two monomers or two ions at

the same point is considered to be a

selfintersection in the system. In the case
Copyright � 2012 WILEY-VCH Verlag GmbH & Co. KGaA
of the continuum model the monomers and

the ions are spheres with unit diameter

(segment length). Location of centers of

twomonomers and (or) of ions at a distance

smaller than the diameter of the system is a

self-intersecting.

It is generally accepted that the Ewald

summation is the most consistent way to

treat long-range electrostatic interactions.

In [14] it was shown that the minimum image

approach gives results practically coincid-

ing with the Ewald summation for short

(N¼ 10, 30) flexible polyelectrolyte. At the

same time the minimum image convention

works much faster. So for self-nonintersect-

ing conformations the energy is calculated

as the sum of pair electrostatic interaction

between all the elements by using method

of minimum image convention.

The natural units for our model are the

lattice constant l (segments length) and

monomers charge q. So the energy is

measured in q2=l units and the temperature

in q2=ðl � kBÞ.
At each MC-step the polyion chain

conformation or one of the position of

counterions is modified with equal prob-

ability 0.5. There are three ways of chain

modification:
1) S
, We
hift: the chain is moved as a whole a

few steps along the Z axis and the rest of

the system remains unchanged.
2) R
eptation: the first few units (not more

than N=5, i.e. the chain ‘‘head’’) are cut

off, and the ‘‘tail’’ is built up so that the

chain retains its length.
3) C
utting off the ‘‘tail’’: the last few units

of the ‘‘tail’’ are cut off and the new

random ones are built up.

A counterion is displaced by a small

distance.
Behavior of a Polyion at the
Charged Wall of the Same Sign:
Results

The results are presented as the plots for the

discrete (Figure 1–3) and continuum
inheim www.ms-journal.de



Figure 1.

Lattice model: the dependence of the root mean square end-to-end distance on the temperature for different

lengths of polymers N and charges of ions qi .
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(Figure 4–6) models. One can make the

following conclusions. Effect of deposition

of the polyion on the substrate with the same

charge was clearly observed. It is explained

by dominance of positive charge counter-

ions, which surround either polyion or

‘‘wall’’ producing the so called overcharging

effect. Thus by lowering the temperature,

the polyion approaches (deposits) to the

surface of the wall (Figure 2, 5). The mean

distance from the center of mass of polyion

to the ‘‘wall’’ tends to zero with decreasing

temperature. The effect increases with the

ion charge increase.

On the whole polyion behaves as a

flexible free polyion in the solution

(Figure 1, 4).[14] At high temperatures,
Figure 2.

Lattice model: the dependence of the mean distance fro

temperature. (See legend of Figure 1).
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the mean distance between the ends of the

polyion tends to the distance between the

ends of the uncharged polymer without

self-intersection hRMS ¼ N3=5. At tempera-

tures T¼ 1� 5 swelling of the coil polyion is

observed due to the repulsion of monomers

from each other. But at low temperatures

due to condensation of counterions com-

paction of polyion occurs, the so-called

transition to a globule.
Behavior of Two Equal Polymer
Chains: Model

The polymer is presented as a sequence of

Nþ 1 nodes-monomers connected by the N
m the center of mass of polyion to the ‘‘wall’’ on the

, Weinheim www.ms-journal.de



Figure 3.

Lattice model: the dependence of the mean z-coordinates of the ions on the temperature. (See legend of

Figure 1).
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immaterial segments of unit length. The

system is placed in a cubic cell with the edge

length L being equal to the double length of

the polymer chain. The periodic boundary

conditions are imposed in all three Corte-

sian directions. Thus we have specific

volume (determined as L3=ð2N þ 2Þ) from
83,33 to 2403,85.

In the lattice model the non-reversal

random walks (NRRW) are used for

generating of the chain. In this model the

k-th node-monomer can not overlap with

the ðk� 2Þ-th one, such chains are called

semi-phantom.[12,13]
Figure 4.

Continuum model: the dependence of the root mean

different lengths of polymers N and charges of ions qi .
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At eachMC-step one of the two polymer

chains is modified. The chain is chosen

with probability 0.5. Coordinates of the

chosen chain X are modified in one of

the four following ways (with probability

0.25):
1) X
squ

, We
new
k ¼ Xold

k ; 0 � k � N �Nc and for

N �Nc þ 1 � k � N Xnew
k are gener-

ated randomly by NRRW (the ‘‘head’’

of the chain is preserved, but the ‘‘tail’’ is

modified);
2) X
new
k ¼ Xold

k ; Nc � k � N and for

0 � k � Nc � 1 Xnew
k are generated
are end-to-end distance on the temperature for

inheim www.ms-journal.de



Figure 5.

Continuum model: the dependence of the mean distance from the center of mass of polyion to the ‘‘wall’’ on

the temperature. (See legend of Figure 4).

Cop
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randomly by NRRW (the ‘‘tail’’ of the

chain is preserved, but the ‘‘head’’ is

modified);
3) X
new
k ¼ Xold

kþNc
; 0 � k � N �Nc and for

N �Nc þ 1 � k � N Xnew
k are gener-

ated randomly by NRRW (the ‘‘head’’

of the chain is removed and the ‘‘tail’’ is

newly grown);
4) X
new
k ¼ Xold

k�Nc
; Nc � k � N and for

0 � k � Nc � 1 Xnew
k are generated ran-

domly by NRRW (the ‘‘tail’’ of the

chain is removed and the ‘‘head’’ is

newly grown).

Here Xnew
k is a three-dimensional vector

of coordinates of the k-th monomer for the

newly built chain conformation. Nc is

randomly chosen from 1 to N=5 at each

MC-step. In the process of computer

modeling for each conformation of the

constructed system it is determined

whether the conformation is self-intersect-

ing one or not. In the discrete model the

location of twomonomers at the same point

is considered to be a self-intersection of the

system. In the continuum model nodes are

spheres with a diameter d, and the approach

of any pair of monomers (except those

linked in the chain) at a distance less than

their diameter, is considered as a self-

intersection in the system.

For non-self-intersecting conformations

the energy is calculated as a sum of pair

potentials of interaction between mono-
yright � 2012 WILEY-VCH Verlag GmbH & Co. KGaA
mers (excluding linked ones). In the case of

the lattice model each contact (the location

of the monomers at a unit distance)

corresponds to the energy "ij, where i, j

are the indices of polymer chains (1 or 2). In

the continuum model the interaction

between monomers is described by

Lennard–Jones potential UðrÞ ¼
�4"ijððd=rÞ12 � ðd=rÞ6Þ (for "ij < 0) and its

repulsive part UðrÞ ¼ 4"ijðd=rÞ12 (for

"ij > 0), where r is the distance between

the centers of monomers, d is the diameter

of monomers.

We investigate only attractive interchain

interaction ("12 < 0). Parameters "11 and

"22 are equal ("11 ¼ "22 ¼ ").We investigate

situations when interchain interactions are

essentially less ("12 ¼ 0:2"), coincide

("12 ¼ �") and greatly higher ("12 ¼ 5")

than intrachain interaction.

So the energy is measured in e-units and
the temperature in j"j=kB.

The variation range for E was deter-

mined in preliminary runs (computer

experiments). This range of the energy

Emin � E � Emax was divided into Nb

«boxes».

As long as the share of non-self-inter-

secting chains is very small (especially for

long polymers), and the share of self-

intersecting chains is large, sorting by the

number of intersections was carried out:

four ‘‘boxes’’ were introduced instead of a

single one. The first box corresponds to
, Weinheim www.ms-journal.de



Figure 6.

Continuum model: the dependence of the mean z-coordinates of the ions on the temperature. (See legend of

Figure 4).
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chains with 1–4 self-intersections, the

second, the third and the forth ones were

for 5–10, 11–18 and for chains with more

than 19 self-intersections correspondingly.

This allowed us to avoid ‘‘freezing’’ the

system in a single ‘‘box’’, corresponding to

the much larger volume of conformational

space compared to others.

As a result of computer simulation using

the Wang–Landau algorithm the distribu-

tion function over ‘‘boxes’’ (Vi) was

determined. With the aid of this function

the canonical values of the internal energy,

the mean-square radius of gyration and the

mean-square distance between the centers

of mass of two polymers were determined.
Behavior of Two Equal Polymer
Chains: Results

As a result of computer simulation we have

determined the energy distributions for

polymers with length 5�N� 25 and differ-

ent energies of interaction of the mono-

mers.

Figure 7 shows a normalized visiting

histograms for boxes nk for the lattice

model, their flatness indicates the correct

tuning of densities V. The dependences are

presented in the plot with parameters

"12 ¼ " < 0 (for other investigated systems

box visiting are similar). Good uniform
Copyright � 2012 WILEY-VCH Verlag GmbH & Co. KGaA
visiting is observed at all energy ranges

except a small deviation at smallest energy

for N¼ 25.

The resulting distributions V for both

models are shown in Figure 8 and 9. Note

that the figures show the energy distribu-

tions only for non-self-intersecting chains.

Figure 10 and 11 present the results for

the root mean-square radius of gyration (R)

and the root mean-square distance between

the centers of mass of polymers (D) as a

function of temperature for the lattice

model. Same dependences for continuum

model are presented in Figure 12 and 13.

The dependences R(T) demonstrate con-

traction of the polymer size at low tem-

peratures. At the same time in Figure 11

and 13 one can observe sharp approach of

centers of mass of polymers with the

decrease of temperature that corresponds

to a coil-globule transition.

Two regimes of compactization are

observed. If the interaction within each

chain is either repulsive (" > 0) or weakly

attractive (j"j < j"12j), at low temperatures

due to mutual attraction of their monomers

("12 < 0) there occurs common compacti-

zation of the system with tightly interwoven

chains. Another regime corresponds to

strong attraction inside each polymer

(j"j >> j"12j). In this case each chain

becomes compact separately and then

two separate globules attract each other
, Weinheim www.ms-journal.de



Figure 7.

Normalized visit rates, compared with prescribed levels (horizontal lines) for different lengths of polymers N

(lattice model, energy parameters are "12 ¼ " < 0).

a)

b)

Figure 8.

Lattice model: the energy-distribution function for different lengths of polymers N and energy parameters:

" < 0 and "12 ¼ " (a), "12 ¼ 0:2" (b), "12 ¼ 5" (c); " > 0 and "12 ¼ �" (d) (The lines were drawn to guide the eye).
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c)

d)

Figure 8.

(Continued).
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‘‘sticking’’ finally together with their sur-

faces. ‘‘Sticking’’ becomes significant at

lower temperatures.
Conclusion

Wang–Landau algorithm used in the pre-

sent work allows to calculate the energy

distribution function in a wide energy range

needed to calculate physical quantities in a

wide range of temperatures. The advantage

of this algorithm is that it finds and properly

accounts for the states of the system with

very small probabilities (within 20–25

orders).

The investigation of the behavior of a

polyion at the charged wall of the same sign

gave the result corresponding to the
Copyright � 2012 WILEY-VCH Verlag GmbH & Co. KGaA
experimental data of other researchers

for DNA[1] where the deposition of the

polyion on the substrate was observed. At

this point we can say that our simulation is

reliable and can be extended to the

modeling of more complicated systems

with more elements.

We investigated the interaction of two

semi-phantom polymer chains with differ-

ent energies of interaction. The length of

the chains were taken relatively small, since

in the case of longer chains longer computer

time is needed to obtain satisfactory results.

This system can be comparatively easy

modified into a more complicated one, for

instance by introducing charges located on

node-monomers and adding counter ions to

the system, i. e. considering a polyelec-

trolyte.
, Weinheim www.ms-journal.de



a)

b)

Figure 9.

Continuum model: the energy-distribution function for different lengths of polymers N and energy parameter:

a) " < 0, "12 ¼ "; b) " > 0, "12 ¼ �".

Figure 10.

Lattice model: The dependence of the mean radius of gyration of the polymer on temperature (j"j=kB units).
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Figure 11.

Lattice model: the dependence of the mean distance between the centers of mass of polymers on temperature

(j"j=kB units) for different lengths N and energy parameters "11, "22, "12 (see legend of Figure 11).

Figure 12.

Continuummodel: The dependence of the mean radius of gyration of the polymer on temperature (j"j=kB units)
for different lengths N in the cases of attraction (solid line) and repulsive (dashed lines) of the monomers in a

single chain. d¼ 1.

Figure 13.

Continuum model: The dependence of the mean distance between the centers of mass of polymers on the

temperature (j"j=kB units) at different lengths N in the cases of attraction (solid line) and repulsive (dashed lines)

of the monomers in one chain. d¼ 1.
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